Luster and Other Reflection Effects
By the term luster we refer to the manner and degree in which light is reflected from the surface of a material. Surfaces of the same material, but of varying degrees of smoothness would, of course, vary in the vividness of their luster, but the type of variation that may be made use of to help distinguish gems, depends upon the character of the material more than upon the degree of smoothness of its surface. Silk has so typical a luster that we speak of it as silky luster, similarly pearl has a pearly luster, so certain gems have peculiar and characteristic luster. The diamond gives us a good example. Most diamond dealers distinguish between real and imitation diamonds at a glance by the character of the luster. That is the chief, and perhaps the only property, that they rely upon for deciding the genuineness of a diamond, and they are fairly safe in so doing, for, with the exception of certain artificially decolourised zircons, no gem stone is likely to deceive one who is familiar with the luster of the diamond. It is not to be denied that a fine white zircon, when finely cut, may deceive even someone who is familiar with diamonds.
Rough zircons are frequently mistaken for diamonds by diamond prospectors, and even by pickers in the mines, so that some care should be exercised in any suspicious case, and one should not then rely solely on the luster. However, in most cases in the trade there is almost no chance of the unexpected presence of a zircon and the luster test is usually sufficient to distinguish the diamond. (Zircons are strongly doubly refractive and with a lens the doubling of the back lines may be seen.)
Adamantine Luster. The luster of a diamond is called adamantine (the adjective uses the Greek name for the stone itself). It is keen and cold and glittering, having a metallic suggestion. A very large percentage of the light that falls upon the surface of a diamond at any low angle is reflected, hence the keenness of its luster. If a diamond and some other white stone, say a white sapphire, are held so as to reflect at the same time images of an incandescent light into the eye of the observer, such a direct comparison will serve to show that much more light comes to the eye from the diamond surface than from the sapphire surface. The image of the light filament, as seen from the diamond, is much keener than as seen from the sapphire. The same disparity would exist between the diamond and almost any other stone. Zircon comes nearest to having adamantine luster of any of the other gems. The green garnet also approaches diamond in luster, hence the name “demantoid,” or diamond like, sometimes applied to it.
Vitreous Luster. The other stones nearly all have what is called vitreous luster (literally, glass like), yet owing to difference of hardness, and consequent minute differences in fineness of surface finish, the keenness of this vitreous luster varies slightly in different stones, and a trained eye can obtain clues to the identity of certain stones by means of a consideration of the luster. Garnets, for example, being harder than glass, take a keener polish, and a glance at a doublet (of which the hard top is usually garnet and the base of glass) will show that the light is better reflected from the garnet part of the top slope than from the glass part. This use of luster affords the quickest and surest means of detecting a doublet.
Oily Luster. Certain stones, notably the peridot and the hessonite have an oily luster.
This is possibly due to reflection of light that has penetrated the surface slightly and then been reflected from disturbed layers beneath the surface. At any rate, the difference in luster may be made use of by those who have trained their eyes to appreciate it. Much practice will be needed before anyone can expect to tell at a glance when he has a peridot by the luster alone, but it will pay to spend some spare time in studying the luster of the various stones.
Turquoise has a dull waxy luster, due to its slight hardness. Malachite, although soft, has, perhaps because of its opacity, a keen and sometimes almost metallic luster.
Luster can be determined rapidly, without apparatus and without damage to the stone. Therefore we have a test which, while it is not conclusive except in a very few cases, will supplement and serve to confirm other tests, or perhaps, if used at first, will suggest what other tests to apply.
Another optical effect that serves to distinguish some stones depends upon the reflection of light from within the material due to a certain lack of homogeneity in the substance.
Cause of Color in the Opal. Opal is distinguished by the prismatic colors that emerge from it owing to the effect of thin layers of material of slightly different density, and hence of different refractive index from the rest of the material. These thin films act much as do soap-bubble films, to interfere with light of certain wave lengths, but to reflect certain other wave lengths and hence certain colors.
Again, in some sapphires and rubies are found minute, probably hollow, tube-like cavities, arranged in three sets in the same positions as the transverse axes of the hexagonal crystal. The surfaces of these tubes reflect light so as to produce a six-pointed star effect, especially when the stone is properly cut to a high, round cabochon form, whose base is parallel to the successive layers of tubes.
Starstones, Moonstones, Cat’s-eyes. The moonstone displays another sort of effect, this time due to the presence of hosts of small twin crystal layers that reflect light so as to produce a sort of moonlight-on-the-water appearance within the stone when the latter is properly cut, with the layers of twin crystals parallel to its base. Ceylon-cut moonstones are frequently cut to save weight, and may have to be recut to properly place the layers so that the effect may be seen equally over all parts of the stone, as set.
Cat’s-eye and tiger’s-eye owe their peculiar appearance to the presence, within them, of many fine, parallel, silky fibers. The quartz cat’s-eye was probably once an asbestos-like mineral, whose soft fibers were replaced by quartz in solution, and the latter, while giving its hardness to the new mineral, also took up the fibrous arrangement of the original material. The true chrysoberyl cat’s-eye also has a somewhat similar fibrous or perhaps tubular structure. Such stones, when cut as a cabochon, show a thin sharp line of light running across the center of the stone (when properly cut with the base parallel to the fibers). This is due to reflection of light from the surfaces of the parallel fibers. The line of light runs perpendicularly to the fibers.
In these cases (opals, starstones, moonstones, and cat’s-eyes) the individual stone is usually easily distinguished from other kinds of stones by its peculiar behavior towards light. However, it must be remembered that other species than corundum furnish starstones (amethyst and other varieties of quartz, for example), so that it does not follow that any starstone is a corundum gem. Also the more valuable chrysoberyl cat’s-eye may be confused with the cheaper quartz cat’s-eye unless one is well acquainted with the respective appearances of the two varieties. Whenever there is any doubt other tests should be applied.